Cilostazol attenuates gray and white matter damage in a rodent model of focal cerebral ischemia.
نویسندگان
چکیده
BACKGROUND AND PURPOSE To evaluate whether delayed treatment with the antiplatelet agent cilostazol reduces the volume of infarction in the gray and white matter in a rodent model of permanent focal cerebral ischemia and to explore the mechanism of the neuroprotective effect in vivo. METHODS Cilostazol (30 or 50 mg/kg) or vehicle was administered by gavage 30 minutes and 4 hours after the induction of cerebral ischemia by permanent occlusion of the left middle cerebral artery (MCA). Animals were euthanized 24 hours after MCA occlusion, and the volume of gray matter damage was evaluated by quantitative histopathology. Axonal damage was determined with amyloid precursor protein immunohistochemistry. Dynamic susceptibility contrast MRI was used to assess regional cerebral blood volume (CBV) and cerebral blood flow (CBF). RESULTS Treatment with the higher dose of cilostazol (50 mg/kg) significantly reduced the volume of gray matter damage and axonal damage in the cerebral hemisphere by 45.0% (P<0.02) and 42.4% (P<0.002), respectively, compared with the control group. Relative CBV in the peri-infarct area after MCA occlusion was significantly increased in the cilostazol-treated group (50 mg/kg) compared with the control group (P<0.05). Relative CBF tended to be higher in the cilostazol-treated group compared with the control group. CONCLUSIONS Treatment with cilostazol significantly reduced the gray and white matter damage associated with permanent focal ischemia. Cilostazol improved CBV and CBF in the peri-infarct area. The major action of cilostazol is to increase perfusion in the ischemic penumbra.
منابع مشابه
Comparison effect of pentobarbital sodium with chloral hydrate anesthesia on post-ischemic damage in an experimental model of focal cerebral ischemia
Introduction: Anesthetic agents, blood pressure, arterial pH and blood gases have found to influence on the pathophysiology of experimental stroke. Despite, there are very few comparative studies about effects of anesthetic agents in animal model of cerebral ischemia. Therefore, in this study, we investigated the effects of chloral hydrate and pentobarbital anesthesia, as comparative study, on...
متن کاملEbselen protects both gray and white matter in a rodent model of focal cerebral ischemia.
BACKGROUND AND PURPOSE The neuroprotective efficacy of an intravenous formulation of the antioxidant ebselen has been comprehensively assessed with specific regard to conventional quantitative histopathology, subcortical axonal damage, neurological deficit, and principal mechanism of action. METHODS Transient focal ischemia (2 hours of intraluminal thread-induced ischemia with 22 hours of rep...
متن کاملEvaluation the protective effect of aminoguanidine on cortex and striatum damage in acute phase of focal cerebral ischemia in rat
Introduction: Several studies have indicated that late treatment of aminoguanidine (AG) reduces cerebral ischemic injuries in animal models. However, the effects of early treatment of AG on cerebral ischemic damage are not well understood. This study was designed to evaluate effect of early treatment of AG on cortex and striatum injuries as well as neurological dysfunctions in transient mode...
متن کاملEffects of the Oral Ingestion of Probiotics on Brain Damage in a Transient Model of Focal Cerebral Ischemia in Mice
Background: Probiotics are microorganisms that may influence brain function via altering brain neurochemistry. New research evidence suggests that probiotic bacteria might protect tissue damage through diminishing the production of free radicals and/or inflammatory cytokines. Therefore, this study was designed to evaluate the effects of probiotic bacteria on the prevention or reduction of brain...
متن کاملGrey matter and white matter ischemic damage is reduced by the competitive AMPA receptor antagonist, SPD 502.
Protection of both grey and white matter is important for improvement in stroke outcome. In the present study the ability of a competitive alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) antagonist to protect axons, oligodendrocytes, and neuronal perikarya, was examined in a rodent model of transient focal cerebral ischemia. SPD 502 (8-methyl-5-(4-( -dimethylsulfamoyl)phenyl)-6...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Stroke
دوره 37 1 شماره
صفحات -
تاریخ انتشار 2006